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ABSTRACT 

 
Approximations are very important because it is sometimes not possible to obtain an exact representation of the 
probability distribution function (PDF) and the cumulative distribution function (CDF). Even when true (exact) 
representations are possible, approximations, in some cases, simplify the analytical treatments. In this paper, we extend 
the known saddlepoint tail probability approximations to univariate cases, including univariate conditional cases. Our 
first approximation (the weighted random sum  applies to unknown and very difficult statistics (we discuss the 
approximations within the random sum Poisson-Exponential random variables).We evaluate the performance of the 
saddlepoint approximation using simulations. Our second approximation (convolutions of Gamma random variables, 

), are difficult to obtain. These computations are also compared with the exact and normal approximations. We find 
that the saddlepoint methods provide very accurate approximations for the CDFs probabilities that surpass other methods 
of approximation, such as normal approximation.The third approximation, including conditional saddlepoint 
approximations, uses the double saddlepoint. To demonstrate the methods of conditioning in statistical inference, we find 
a mid p-value using a conditionalsaddlepoint approximation for percentile modified linear rank tests. We show that in the 
double saddlepoint case, the saddlepoint approximations demonstrate better accuracy than the normal approximation 
while sharing the same accuracy. 
 
Keywords: Saddlepoint approximation, weighted random sum, poisson-exponential random variables, convolutions of 
gamma random variables, percentile modified linear rank tests. 
 
INTRODUCTION  
 
The need to analyze distributions of linear combinations 
of random variables arises in many fields of research, 
such as biology, seismology, risk theory, insurance 
application and health science. A mathematical linear 
combination is expressed as  
 

 
where we have a set of coefficients,  through , that 

are multiplied by the corresponding variables,  through 

. During the first term, we have times , which is 

added to times , and so on, up to the variable  

(Ali and Obaidullah, 1982). 
 
This process can be expressed as the sum of the terms 

times , i  The selection of the 

coefficients  through very much depends on the 

application of interest and the types of scientific questions 
that we would like to address. 
 
The present paper is organized as follows: in section 1, 
we establish the basic saddlepoint approximations for the 
linear combination of random variables. In section 2, we 
discuss Saddlepoint approximation and real numerical 
comparisons for the continuous Random Sum Poisson-
Exponential Model. In section 3, we derive results for 
numerical examples for a linear combination of the 
Gamma distribution. The performance of the saddlepoint 
approximation for Percentile modified linear rank test is 
presented in section 4. 
 
1.  The linear combination of random variables 
In this paper, we discuss saddlepoint approximations to 
cumulative distribution functions for the linear 
combination of random variables (Ali and Obaidullah, 
1982) in three different cases, as presented: 
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The linear combination of the sum of independent 
random variables when  is a random variable 

The distributions considered in this study results from the 
combination of two independent distributions in a 
particular way. When all , this process is termed 

“generalization” by some authors (Johnson et al., 2005), 
though the term “generalized” is greatly overused in 
statistics. This distribution includes the sums of 
independent identically distributed (i.i.d.) random 
variables, , with random index , independent of 

.   

Definition 1 
Let  be a sequence of independent 
identically distributed (i.i.d.) random variables with a 
common distribution . Let be a discrete random 
variable that takes the value  and let be 
independent of , and be non-negative real numbers. 
The sum  

 
is called the weighted random sum (Kasparaviciute and 
Leonas, 2013). 
 
Such sums have a wide range of applications in branching 
processes, damage processes and risk theory. A common 
application of the random sum is that a total claim amount 
is presented to an insurance company, where  is the 
number of claims and the s are the individual claims, 
which are assumed to be independent. 
 
In general, random sums are extremely difficult to 
investigate; therefore, approximation techniques are 
frequently employed. Saddlepoint methods overcome this 
difficulty while providing us with an influential tool for 
obtaining precise expressions for distribution functions 
that are still unknown in the closed form. In addition, 
these methods roughly surpass other techniques in terms 
of calculating expenses, but exceed no other methods in 
terms of accuracy. 
 
In this paper, approximations of the unknown difficult 
random sum Poisson-Exponential random variables which 
have a continuous distribution are discussed. The 
saddlepoint approximation method is shown to be not 
only quick, dependable, stable and accurate enough for 
general statistical inference, but it is also applicable 
without deep knowledge of probability theory. 
 
 

The linear combination of the sum of independent 
random variables when  is constant 

Linear combinations of convoluted random variables 
occur in a wide range of fields. In most cases, the exact 
distribution of these linear combinations is extremely 
difficult to determine, and the normal approximation 
usually performs very badly for these complicated 
distributions. A better method of approximating linear 
combination distributions involves the additional use of 
saddlepoint approximation. 
 
Saddlepoint approximation is able to provide accurate 
expressions for distribution functions that are unknown in 
their closed forms. This method not only yields an 
accurate approximation, near the center of the distribution 
but also controls the relative error in the far tail of the 
distribution.  
 
Definition 2 
The probability distribution of the sum of two or more 
independent random variables is the convolution of their 
individual distributions. Consider the sum of two 
independent random variables, and . The distribution 
of their sum, , is the convolution of these 
random variables. Now, let be i.i.d. 
random variables and  be numbers. Thus, 
the random variable  

 (3) 

is called the linear combination of the convolution 
random variable. 
 
We derive the saddlepoint approximation of the 
convolution  where  and  are real 
constants and ,  denote Gamma random variables, 
respectively, while being distributed independently of 
each other. The associated saddlepoint approximations 
CDFs, exact and normal approximation are derived. The 
plots for the CDFs arealso given. 
 
The linear combination of sum of independent 
Bernoulli random variables when  is constant and  
are scores 
The approximation for the distribution function of a test 
statistic is extremely important in statistics. Many 
statistical procedures that are applicable to the two sample 
problems are based on the rank order statistics for the 
combined samples, and many commonly used two-sample 
rank tests act as a linear combination of certain indicator 
Bernoulli random variables for the combined ordered 
samples.  
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For the approximation presented in this paper, a 
saddlepoint formula proposed are given constants called 
weights or scores, and  are Bernoulli distributions, 

 
 
Definition 3 
Let and be two 
independent random samples drawn from populations 
with the continuous cumulative distribution 
functions, and , respectively. Let ; 
then, the statistic  

 (4) 
is called a linear rank statistic, where the {  } are given 
constants called weights or scores,   if the  
sampled value in the combined ordered sample is  and  

if it is  (Gibbons and Chakraborti, 2003). It is 
noteworthy to mention that the statistic  is a linear 
combination of independent indicator Bernoulli random 
variables . 
 
This paper examines mid p-values from the null 
permutation simulations distributions. The permutation 
simulations may lead to intractable computations apart 
from small values for the sample size, and the normal 
approximation may not result in the desired accuracy, 
particularly when the sample size is small. Saddlepoint 
approximation can be used to overcome this problem. 
This method results in a highly accurate approximation 
without placing constraints or guidelines on the values of 
the sample sizes. 
 
In the three cases of linear combinations involving 
random variables given in Equations (2), (3) and (4), we 
used the saddlepoint approximation formula proposed by 
Daniels (1954, 1987) that has the type developed by 
Lugannani and Rice (1980) for the cumulative 
distribution function of a continuous random variable  
with CDF  andcumulant generating function CGF , 
with mean, . The saddlepoint approximation for , 
as introduced by Lugannani and Rice (1980), is  

 

where  and �� denote the standard normal density and 

CDF, respectively, and 
 

are functions of  and saddlepoint . In this case,  is the 
implicitly defined function of  given as the unique 

solution to , and  captures the sign ± 
for . 
 
To approximate these unknown difficult statistics based 
on their moment generating functions, theorems related to 
these unknown statistics are employed. Then, we derived 
the saddlepoint equations that, in some cases, can be 
solved using numerical methods. By performing some 
calculations and applying saddlepoint formulas, we can 
obtain the CDF for these unknown difficult statistics. 
Subsequently, we find the exact distributions using 
simulation methods and the mean square error (MSE) as 
well as the absolute, relative error (RE) to investigate the 
performance of the saddlepoint approximation. 
 
The Skovgaard (1987) approximation when  is a 
continuous variable for which   admits a densityis 

 where 

 

 
The components  and  are associated with  and  
respectively.For and is the interior of the 
convex hull of the support 

. Here, the m-dimensional 
saddlepoint   solves the set of m 
equations Where  is the 
gradient with respect to both and . If  is the 
corresponding Hessian, the continuity corrections to CDF, 
as introduced by Skovgaard (1987) should be used to 
achieve the greatest accuracy. 
 
First continuity correction 
Suppose  is the solution to  
required for the numerator saddlepoint with  . 
Then, 

 where 

 

 
and 0ŝ  solves jsKs =′ )0,ˆ( 0 ; see Skovgaard (1987). 
 
Second continuity correction 
If  is the offset value of  and  is 
the offset saddlepoint solving  
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with  , then 

 where 

 

 
and the saddlepoint    is unchanged. Then, we find 

 
 
2. Saddlepoint approximation and real numerical 
comparisons for the continuous Random Sum Poisson 
Model  
The random sum distribution plays a key role in both 
probability theory and its applications in biology, 
seismology, risk theory, meteorology and health science. 
The statistical significance of this distribution arises from 
its applicability to real-life situations, in which the 
researcher often observes only the total amount, say , 
which is composed of an unknown random number  of 
random contributions, say .  
 
In health science, the random sum plays a very important 
role in many real-life applications. For example, let the 
number of hot spot of a contagious disease follow a 
Poisson distribution with a mean of , and let the number 
of sick people within the hotspotfollow a Negative 
Binomial distribution. If we want to find the probability 
that the total number of sick people is greater than 70, 
then the total number of sick people within the hotspotis 

                                                    (16) 
where  and 

 . 
 
Another practical application of the random sum is the 
number of times that it rains in a given time period, say 

, which has a Poisson distribution with mean . If the 
amount of rain that falls has an Exponential distribution 
and if the rain fallsat that time period is independent of  
then the total rainfall in the time period is 

                                                  (17) 
where  and  
. 
 In fact, the total random sums  are 
composed of an unknown random number  of other 
random contributions, say  or  which are very complex 
to analyze. In most cases, the distribution of the random 
sum is still unknown; in other cases, it is already known 
but is too complex for the computation of the distribution 
function, which often becomes too slow for many 

problems (Johnson et al., 2005). The saddlepoint 
approximation method can help us gain knowledge of 
these unknown difficult statistical behavior. 
 
In this section, we suggest that the saddlepoint 
approximation and efficiency analysis should be 
compared to the true distribution over real data compared 
with other methods of approximation, such as normal 
approximations. Suppose that the number of times it rains 
in a given time period,  has a Poisson distribution with 
mean . Suppose,also when it rains, the amount of rain 
falling has an Exponential distribution. Let the rain falling 
and the time period be independent of one another and of 

. Then, the total rainfall in the time period is as follows: 

 
where are independent random variables with a 
distribution of . Suppose now we observe the rainfall 
for in certain periods: . 
 
Note that the probability of no rain in any such period is 

 = exp (  
Withers and Nadarajah (2011) considered the annual 
maximum daily rainfall data for the year 1907 to 2000 for 
fourteen locations in West Central Florida: Clermont, 
Brooksville, Orlando, Bartow, Avon Park, Arcadia, 
Kissimmee, Inverness, Plant City, Tarpon Springs, Tampa 
International Airport, St. Leo, Gainesville, and Ocala. The 
data were obtained from the Department of Meteorology 
in Tallahassee, Florida. Consider the distribution of 

, such that the unknown parameters are and . The 
study conducted by Withers and Nadarajah (2011) found 
a distribution fit by these three methods, unconditional 
maximum likelihood estimation, conditional maximum 
likelihood estimation, and moments estimation. 
Remarkably, unconditional maximum likelihood 
estimation provided the best fit for each location; for 
example, in Orlando, the estimates were  = 9.565  = 
2.373. 
 
The numerical computations are plotted in figure 1 to 
show the ‘exact’ CDFs for a random sum Poisson 
( )– distribution  (the 
solid line), the saddlepoint (the dotted line) and the 
normal approximation  (the dashed line). 
 
The empirical distribution function is used to determine 
the ‘exact’ CDF for this model by simulating  
independent values of , where  is , and 
the  are i.i.d random variables generated using 
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MATLAB program. This plot shows that the shape of 
 is the same as that of (i.e., the two 

approximations are identical) but differs from that of 
. The plot suggests that the saddlepoint 

approximation for CDFs has the same accuracy as the 
‘exact’ CDFs and is far superior to normal approximation. 
Table 1 shows the evaluation of the left tail probabilities 
for certain values of the exact  of the random sum in 
the second column, with the saddlepoint  in the 
third column and the normal approximation in fourth 
column. However, based on the fifth column (the absolute 
relative errors), the accuracy of this method is very clear. 
For example, in the left tail probability, we obtained the 
following relative error values: 1.04E-01, 4.94E-02, 
1.07E-02, 5.70E-02,1.50E-02..., and so on. All of these 
amounts and others suggest good approximations in the 
left tail. The maximum absolute relative error for the 

vs.  approximation, based on our calculations 
for this example, appears in this tail and was 1.04E-
01when  and 

 However, the approximation is still 
good with this amount of error (acceptable). 
 
If we refer to table 2 to examine the relative error values 
near the center of the distribution, we obtain 3.76E-03, 
3.09E-03, 2.69E-03,4.38E-03…, and so on. Based on 
these values and others, the accuracy is increased 
compared to that in the left tail probability.      
 
The relative error values in the right tail probability, as 
shown in table 3, are3.10E-04,1.07E-05,4.91E-04,2.66E-
04…, and so on. At this point, the accuracy is optimal. 
 
Throughout the entire set of results (from =0.1 to 

=40.5 with step 0.1), with its corresponding figure 
1carried out usingMATLAB program, the accuracy 
generally appears to be increasing. In general, for this 
application, the mean squared error of the saddlepoint 
approximation is MSE(1) = 1.28625E-06, that is, very 
close to zero, while the  means squared error of the 
normal approximation is MSE(2) = 000476.        
  

 
 
Fig. 1. The performance of the saddlepoint approximation , the exact  and the normal approximation for 
random sum Poisson (9.565)- Exponential (2.373) model. 
 
Table 1. Approximate left tail of the saddlepoint approximation  vs. exact and the normal approximation 

, for random sum Poisson (9.565) Exponential (2.373) model.  
 

    %RE1 %RE2 
0.1 0.000100 8.96E-05 0.014731 1.04E-01 146.3100 
0.2 0.000132 0.0001255 0.015094 4.94E-02 113.3485 
0.3 0.000168 0.0001662 0.015464 1.07E-02 91.04762 
0.4 0.000225 0.0002122 0.015843 5.70E-02 69.41333 
0.5 0.000260 0.0002639 0.016229 1.50E-02 61.41923 
0.6 0.000320 0.0003217 0.016624 5.44E-03 50.95000 
0.7 0.000395 0.0003862 0.017026 2.24E-02 42.10380 
0.8 0.000487 0.0004575 0.017437 6.05E-02 34.80493 
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These results indicate that the saddlepoint approximation 
is almost exact. Thus, we conclude that the saddlepoint 
approximation method provides us with an accurate 
approximation for this difficult statistic, the accuracy of 
which appears to leave no room for doubt in either of the 
two tails or in the center of the distribution.  
  
3. Real numerical comparisons of the Saddlepoint 
approximation for linear combination of Gamma 
distribution 
Saddlepoint approximation plays an important role in 
helping us gain knowledge about unknown difficult 
distributional behavior, such as the linear combination of 
random variables. In this study, we discuss the linear 
combination of the Gamma distribution. This convolution 
model is given by  

 
where,  and  are both independent, following an 
Gamma distribution with parameters  and , 
respectively. This paper investigates the saddlepoint 
approximations of the convolution, where  and 

 are real constants. 
 
In the univariate case, a general saddlepoint 
approximation was given for the continuous CDFs. For 
the linear combinations of Gamma models, this method of 

approximation was applied where the root was found 
numerically. In this setting, the efficiency of this method 
was explored using the empirical CDFs found by 
simulation methods. 

 
Figure 2 shows a comparative plot of the ‘true’ 
CDFs  with the saddlepoint CDFs and the 
normal approximation CDFs for a linear combination of 
Gamma distribution. It is clear from this figure that the 
two approximations  and  are very close, but 
differs from This result means that the 
saddlepoint approximation for CDFs has the same 
accuracy as the ‘exact’ CDFs and is far superior to the 
normal approximation. The first value of each cell of  
table 4 is ‘exact’. The second and the third values are the 
saddlepoint approximation and normal approximation, 
respectively. The fourth and fifth columns show the 
absolute, relative errors between the saddlepoint 
approximation and the ‘exact’ CDFs and the relative 
errors between the normal approximation and the ‘exact’ 
CDFs, respectively.  
 
The ‘exact’ CDFs were  computed  using  the  empirical  
distribution  by  simulating  independent values of 

, where 
 and 

Table 2. Approximate center of the distribution of the saddlepoint approximation , the exact  & the normal 
approximation  for Poisson (9.565) Exponential (2.373) model. 
 

    %RE1 %RE2 

21.4 0.49764 0.49577 0.45025 3.76E-03 0.095229 
21.5 0.50122 0.49967 0.45406 3.09E-03 0.09409 
21.6 0.50492 0.50356 0.45788 2.69E-03 0.093163 
21.7 0.50967 0.50744 0.46171 4.38E-03 0.094100 
21.8 0.51366 0.51131 0.46554 4.58E-03 0.093681 
21.9 0.51710 0.51518 0.46937 3.71E-03 0.092303 
22.0 0.52150 0.51903 0.47320 4.74E-03 0.092617 
22.1 0.52472 0.52287 0.47704 3.53E-03 0.090868 

  
Table 3. Approximate right tail of the saddlepoint approximation , the exact  & the normal approximation 

 for random sum Poisson (9.565) Exponential (2.373) model. 
 

    %RE1 %RE2 
39.8 0.93567 0.93538 0.95030 3.10E-04 0.015636 
39.9 0.93630 0.93629 0.95128 1.07E-05 0.015999 
40.0 0.93764 0.93718 0.95225 4.91E-04 0.015582 
40.1 0.93831 0.93806 0.95320 2.66E-04 0.015869 
40.2 0.93923 0.93893 0.95413 3.19E-04 0.015864 
40.3 0.93974 0.93980 0.95505 6.38E-05 0.016292 
40.4 0.94101 0.94065 0.95596 3.83E-04 0.015887 
40.5 0.94162 0.94149 0.95685 1.38E-04 0.016174 
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  when .Generated by the 
MATLAB program.    
 
Table 4 shows the relative errors for  vs.  
values of the distribution. The relative errors remain very 
small for the computations and the accuracy appears quite 
good, although the accuracy in the center is not quite as 
good as that in the left tail. Moreover, the numerical 
results indicate that the normal approximations are 
considerably less accurate than the saddlepoint 
approximations.  
 

The values of the relative errors for  vs. ,for 
the right tail , the accuracy is good and very clear. 
However, the performance of the normal approximation 
in this tail appears to be much better than its performance 
in the center and in the left tail. Nevertheless, the 
saddlepoint approximation maintains its accuracy in the 
left, right and center of the distribution. In general, the 
numerical results indicate that the saddlepoint 
approximation is far more accurate than the normal 
approximation.  
 

 

 
 

Fig. 2. Performance ofsaddlepoint approximation  and the exact  with normal approximation  
for linear combination of Gamma (0.5,1,1,2).   
 
Table 4. Comparison saddlepoint approximation  and the exact  with normal approximation   
for linear combination of Gamma (0.5,1,1,2).    
  

    %RE1 %RE2 
3.5000 0.5242 0.5242 0.4028 0 0.231591 
6.0000 0.7448 0.7433 0.6440 0.002014 0.135338 
8.5000 0.8636 0.8621 0.8376 0.001737 0.030107 

11.0000 0.9268 0.9260 0.9452 0.000863 0.019853 
13.5000 0.9610 0.9603 0.9866 0.000728 0.026639 
16.0000 0.9790 0.9787 0.9977 0.000306 0.019101 
18.5000 0.9887 0.9886 0.9997 0.000101 0.011126 
21.0000 0.9939 0.9939 1.0000 0 0.006137 
23.5000 0.9968 0.9967 1.0000 0.000100 0.003210 
26.0000 0.9983 0.9982 1.0000 0.000100 0.001703 
28.5000 0.9991 0.9991 1.0000 0 0.231591 
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Based on figure 2 with its corresponding numerical result 
using MATLAB program (from  = 3.5000 to  
=28.5000 with step 2.5), this leads to 

 
Additionally, the MSE (2) for  vs.   was 
calculated as 

 
 
We note that the value of MSE(1) is far smaller than that 
of MSE(2) and that MSE(1) is itself very small and close 
to zero (i.e. the accuracy of the estimator with a smaller 
mean squared error is also higher). This result indicates 
that the saddlepoint approximation furnishes a good fit 
and is superior to the normal approximation. 
 
4. The linear combinations of the rank-order statistics 
for percentile modified linear rank tests 
P-value is associated with a test statistic. It is the 
probability if the test statistic really were distributed as it 
would be under the null hypotheses, of observing a test 
statistic (as extreme as, or more extreme than) the one 
actually observed. 
 
The smaller p-value, the more strongly the test rejects the 
null hypothesis, that is, the hypothesis being tested. A p-
value of 0.05 or less rejects the null hypothesis. However, 
this study uses saddlepoint methods to determine mid-p-
values from the linear combinations of the rank-order 
statistics. The two methods suggest that normal 
approximation and permutation simulations can be used 
to determine mid-p-values from the null permutation 
distributions. The permutation simulations lead to 
intractable computations apart from the small sample size. 
The normal approximation demands that certain 
conditions be applied relative to the sample size; thus, 
without these conditions, the results will not attain the 
desired accuracy, particularly when the sample size is 
small.  
 

The saddlepoint approximation provides a result using a 
highly accurate approximation without the need to place 
constraints or guidelines on the sample, and its accuracy 
is apparent even when the sample size is 1. Another 
advantage of these saddlepoint methods is that the 
required computational times are essentially negligible 
compared to the simulations. The real datasets used 
include small, intermediate and large sample sizes 
respectively,to show how accurate the saddlepoint method 
can be for all sample sizes. 
 
For the third new estimators, table 5 shows the exact 
(true), normal and saddlepoint mid-p-values for linear 
combinations of the rank-order statistics for the two 
sample problems. In all examples, as a result, we 
determined how much the permutation simulations lead to 
complicated computations, apart from small values for the 
sample size. As indicated by the absolute relative errors, 
saddlepoint approximations can replace the permutation 
simulations and provide mid-p-values that are virtually 
exact for all practical purposes without the same required 
conditions or guidelines regarding the sample size as the 
normal approximation.And in most cases, the second 
correction is better than first corrections. Additionally, in 
both two continuity-corrected CDFs, the saddlepoint 
approximation is far more accurate than the normal 
approximation.All of the computations for this third new 
estimator were performed using FORTRAN software. 
 
CONCLUSION  
 
Estimating the CDFs for some linear combination of 
random variables is one of the problems we face in 
statistical inference that has many applications throughout 
life. The difficulty of estimating the CDFs for a given 
model should be detected. In this study, we used 
saddlepoint approximations as a better method to achieve 
an accurate approximation of the CDFs.Based on present 
study, three different versions of new saddlepoint 
approximations were developed. For the first 
approximation(the weighted random sums . We  
demonstrated the performance of the saddlepoint 
approximation in a wide range of applications.The 

Table 5. Comparisonof saddlepoint approximation mid p-values and the exact with normal approximation for 
percentile modified linear rank tests. 
 

Saddlepoint 
Normal 

First continuity correction Second continuity correction Exact 
Mid-p- 
value %RE Mid-p-value %RE Mid-p-value %RE 

0.322 0.325 0.003106 0.323 0.009317 0.322 0 
0.413 0.415 0 0.413 0.004843 0.413 0 
0.377 0.378 0.002653 0.378 0.002653 0.377 0 
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proposed new estimators using the saddlepoint 
approximationis highly accurate. The performance of the 
first new estimator for the random sumwas evaluated by 
the relative error between the exact value and the 
saddlepoint approximation and between the exact value 
and the normal approximation for each value. In 
addition,the mean squared error for the saddlepoint 
approximation was compared with the mean squared error 
for the normal approximation.For the second new 
estimators, saddlepoint approximation to a linear 
combination of Gamma models was considered. These 
models show close agreement between the exact, and 
saddlepoint and far superior accuracy to the normal 
approximation. Moreover, for the third new estimators, 
saddlepoint approximations can replace the permutation 
simulations and provide mid-p-values that are virtually 
exact for all practical purposes without the same required 
conditions or guidelines regarding the sample size as the 
normal approximation.In conclusion,we confirmed the 
accuracy of the saddlepoint approximation in these three 
different settings for the linear combination model. 
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